4.5 Article

Electroosmotic flow of non-Newtonian fluids in a constriction microchannel

Journal

ELECTROPHORESIS
Volume 40, Issue 10, Pages 1387-1394

Publisher

WILEY
DOI: 10.1002/elps.201800315

Keywords

Electrokinetic; Electroosmosis; Microfluidics; Shear thinning; Viscoelasticity

Funding

  1. NSF [CBET-1704379]

Ask authors/readers for more resources

Insulator-based dielectrophoresis has to date been almost entirely restricted to Newtonian fluids despite the fact that many of the chemical and biological fluids exhibit non-Newtonian characteristics. We present herein an experimental study of the fluid rheological effects on the electroosmotic flow of four types of polymer solutions, i.e., 2000 ppm xanthan gum (XG), 5% polyvinylpyrrolidone (PVP), 3000 ppm polyethylene oxide (PEO), and 200 ppm polyacrylamide (PAA) solutions, through a constriction microchannel under DC electric fields of up to 400 V/cm. We find using particle streakline imaging that the fluid elasticity does not change significantly the electroosmotic flow pattern of weakly shear-thinning PVP and PEO solutions from that of a Newtonian solution. In contrast, the fluid shear-thinning causes multiple pairs of flow circulations in the weakly elastic XG solution, leading to a central jet with a significantly enhanced speed from before to after the channel constriction. These flow vortices are, however, suppressed in the strongly viscoelastic and shear-thinning PAA solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available