4.7 Review

Modulating ROS to overcome multidrug resistance in cancer

Journal

DRUG RESISTANCE UPDATES
Volume 41, Issue -, Pages 1-25

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.drup.2018.11.001

Keywords

Cancer chemotherapy; Multidrug resistance; Redox balance; ROS modulators; Sensitizing agents

Funding

  1. Guangzhou Postdoctoral Foundation of International Training for Dr. Qingbin Cui
  2. NIH [1R15GM116043-01]

Ask authors/readers for more resources

The successful treatment of cancer has significantly improved as a result of targeted therapy and immunotherapy. However, during chemotherapy, cancer cells evolve and can acquire multidrug resistance (MDR), which significantly limits the efficacy of cancer treatment and impacts patient survival and quality of life. Among the approaches to reverse MDR, modulating reactive oxidative species (ROS) may represent a strategy to kill MDR cancer cells that are mechanistically diverse. ROS in cancer cells play a central role in regulating and inducing apoptosis, thereby modulating cancer cells proliferation, survival and drug resistance. The levels of ROS and the activity of scavenging/anti-oxidant enzymes in drug resistant cancer cells are typically increased compared to non-MDR cancer and normal cells. Consequently, MDR cancer cells may be more susceptible to alterations in ROS levels. Numerous studies suggest that compounds modulating cellular ROS levels can enhance MDR cancer cell death and sensitize MDR cancer cells to certain chemotherapeutic drugs. In the current review, we discuss the critical and targetable redox-regulating enzymes, including mitochondrial electron transport chain (ETC) complexes, NADPH oxidases (NOXs), enzymes related to glutathione metabolism, glutamate/cystine antiporter xCT, thioredoxin reductases (TrxRs), nuclear factor erythroid 2-related factor 2 (Nrf2), and their roles in regulating cellular ROS levels, drug resistance as well as their clinical significance. We also discuss and summarize the findings in the past decade regarding the efficacy of ROS modulators for the treatment of MDR cancer alone or as sensitizing compounds. Compounds that are efficacious in modulating ROS generation represent a prominent class of drug candidates that warrants evaluation in clinical trials for patients harboring MDR cancers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available