4.2 Review

Methylglyoxal stress, the glyoxalase system, and diabetic chronic kidney disease

Journal

CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION
Volume 28, Issue 1, Pages 26-33

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/MNH.0000000000000465

Keywords

chronic kidney disease; diabetes; end-stage renal disease; glyoxalase; methylglyoxal

Funding

  1. Dutch Heart Foundation [2017T039]
  2. Dutch Diabetes Foundation [2017.81.005]

Ask authors/readers for more resources

Purpose of review Chronic kidney disease (CKD) remains a serious diabetic complication despite the use of widely employed interventions such as angiotensin-converting enzyme inhibitors and glucose-lowering treatments. Accumulation of methylglyoxal, a highly reactive glucose metabolite and a major precursor in the formation of advanced glycation end products, may link the hemodynamic, inflammatory, metabolic, and structural changes that drive diabetic CKD. Therefore, methylglyoxal may serve as a potential therapeutic target to prevent diabetic CKD. Recent findings Higher plasma methylglyoxal levels were shown to be associated with a decline in the estimated glomerular filtration rate. Furthermore, interventions that lower methylglyoxal levels reduced albuminuria in rodent models of diabetes. In addition, the glyoxalase system, which detoxifies methylglyoxal into D-lactate, has been identified as a key protective enzymatic system against diabetic CKD in both human and rodent studies. Recently, several promising treatments to lower methylglyoxal directly or to boost the glyoxalase system have been identified. Summary The review highlights the mechanisms through which methylglyoxal is formed in diabetes, and how methylglyoxal contributes to the mechanisms that drive CKD in diabetes. Furthermore, we discuss the role of glyoxalase-1 in diabetic CKD. Finally, we discuss recent data about treatments that lower methylglyoxal stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available