4.5 Article

Collision-Free Path-Planning for Six-DOF Serial Harvesting Robot Based on Energy Optimal and Artificial Potential Field

Journal

COMPLEXITY
Volume -, Issue -, Pages -

Publisher

WILEY-HINDAWI
DOI: 10.1155/2018/3563846

Keywords

-

Funding

  1. National Natural Science Foundation of China [51705365]
  2. National Key Research and Development Program of China [2017YFD0700100]

Ask authors/readers for more resources

Collision-free autonomous path planning under a dynamic and uncertainty vineyard environment is the most important issue which needs to be resolved firstly in the process of improving robotic harvesting manipulator intelligence. We present and apply energy optimal and artificial potential field to develop a path planning method for six degree of freedom (DOF) serial harvesting robot under dynamic uncertain environment. Firstly, the kinematical model of Six-DOF serial manipulator was constructed by using the Denavit-Hartenberg (D-H) method. The model of obstacles was defined by axis-aligned bounding box, and then the configuration space of harvesting robot was described by combining the obstacles and arm space of robot. Secondly, the harvesting sequence in path planning was computed by energy optimal method, and the anticollision path points were automatically generated based on the artificial potential field and sampling searching method. Finally, to verify and test the proposed path planning algorithm, a virtual test system based on virtual reality was developed. After obtaining the space coordinates of grape picking point and anticollision bounding volume, the path points were drew out by the proposed method. 10 times picking tests for grape anticollision path planning were implemented on the developed simulation system, and the success rate was up to 90%. The results showed that the proposed path planning method can be used to the harvesting robot.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available