4.5 Article

The changing water cycle: climatic and socioeconomic drivers of water-related changes in the Andes of Peru

Journal

WILEY INTERDISCIPLINARY REVIEWS-WATER
Volume 2, Issue 6, Pages 715-733

Publisher

WILEY
DOI: 10.1002/wat2.1105

Keywords

-

Funding

  1. Direct For Social, Behav & Economic Scie
  2. Divn Of Social and Economic Sciences [1253779] Funding Source: National Science Foundation

Ask authors/readers for more resources

Water resources in high mountains play a fundamental role for societies and ecosystems both locally and downstream. Impacts of global change, including climate change, glacier shrinkage, and socioeconomic forces related to demographics, agroindustrial development, and hydroelectricity generation; pose new hydrological risks for human livelihoods. However, these hydroclimatic and socioeconomic drivers of water resource change are often poorly quantified and interconnected, while data scarcity poses challenges in these regions. Here we review the state of knowledge for two major catchments in the Peruvian Andes, which hold the largest tropical glacier mass worldwide: the Santa River (Cordillera Blanca) and Vilcanota River (Cordillera Vilcanota). Our integrative review of water resource change and comparative discharge analysis of two gauging stations in the Santa and Vilcanota River catchments show that the future provision of water resources is a concern to regional societies and must be factored more carefully into water management policies. In this context, observed hydroclimatic and socioeconomic changes represent important drivers of water availability, allocation, and conflicts over water resources. The legal framework and decentralized institutional architecture in Peru could potentially provide a basis for participatory integrative water management; however, unequal power relations, institutional fragility and increasing competition over water resources hamper these efforts. We identify several research gaps, including the need for more in situ data, cultural analyses, and a risk-based framework that combines climate-related hazards with human and natural vulnerabilities. Finally, this review suggests that future adaptation plans for water management should better link science, society, and policy. (C) 2015 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available