4.3 Article

Modeling a rotator cuff tear: Individualized shoulder muscle forces influence glenohumeral joint contact force predictions

Journal

CLINICAL BIOMECHANICS
Volume 60, Issue -, Pages 20-29

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.clinbiomech.2018.10.004

Keywords

Muscle forces; Rotator cuff; Computational model; Glenohumeral; Kinematics; Older adult

Funding

  1. National Institute on Aging (MA) of the National Institutes of Health (NIH) [F31AG040921, F31AG050921]
  2. Wake Forest University Claude D. Pepper Older Americans Independence Center [P30AG021332]
  3. National Science Foundation (NSF) [1405246]
  4. Wake Forest Center for Biomolecular Imaging
  5. Wake Forest School of Medicine Translational Science Institute Clinical Research Unit
  6. NATIONAL INSTITUTE ON AGING [P30AG021332, F31AG040921] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Background: Rotator cuff tears in older individuals may result in decreased muscle forces and changes to force distribution across the glenohumeral joint. Reduced muscle forces may impact functional task performance, altering glenohumeral joint contact forces, potentially contributing to instability or joint damage risk. Our objective was to evaluate the influence of rotator cuff muscle force distribution on glenohumeral joint contact force during functional pull and axilla wash tasks using individualized computational models. Methods: Fourteen older individuals (age 63.4 yrs. (SD 1.8)) were studied; 7 with rotator cuff tear, 7 matched controls. Muscle volume measurements were used to scale a nominal upper limb model's muscle forces to develop individualized models and perform dynamic simulations of movement tracking participant-derived kinematics. Peak resultant glenohumeral joint contact force, and direction and magnitude of force components were compared between groups using ANCOVA. Findings: Results show individualized muscle force distributions for rotator cuff tear participants had reduced peak resultant joint contact force for pull and axilla wash (P <= 0.0456), with smaller compressive components of peak resultant force for pull (P = 0.0248). Peak forces for pull were within the glenoid. For axilla wash, peak joint contact was directed near/outside the glenoid rim for three participants; predictions required individualized muscle forces since nominal muscle forces did not affect joint force location. Interpretation: Older adults with rotator cuff tear had smaller peak resultant and compressive forces, possibly indicating increased instability or secondary joint damage risk. Outcomes suggest predicted joint contact force following rotator cuff tear is sensitive to including individualized muscle forces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available