4.8 Review

First-Principles Simulations for Morphology and Structural Evolutions of Catalysts in Oxygen Evolution Reaction

Journal

CHEMSUSCHEM
Volume 12, Issue 9, Pages 1846-1857

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.201802525

Keywords

ab initio calculations; electrochemistry; nanoparticles; phase transitions; spinel phases

Funding

  1. National Science Foundation of China [91545107, 21773032]
  2. Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institute of Higher Learning

Ask authors/readers for more resources

Developing a robust catalyst for the oxygen evolution reaction is the major challenge in the field of renewable energy. The difficulty comes from not only the low intrinsic activity, but also the structural uncertainty of catalysts under the operating conditions. Therefore, finding the relationship between structural evolution and the OER activity is urgently required. At present, first-principles simulations have become a powerful tool to understand the mechanism of the OER at the atomic level. In this review, TiO2, MnOx, and CoS2 are used as examples to demonstrate how first-principles calculations can predict the morphology of nanoparticles, explore the pathway of electrochemically induced phase transition, and resolve the structure of a heterojunction. With these new theoretical techniques, the structure-activity relationship of the OER for a complex catalytic system can be determined without experimental inputs. Such a bottom-up strategy holds great promise to reveal the active site and mechanism of a complex catalytic system from first-principles calculations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available