4.7 Article

Testosterone disruptor effect and gut microbiome perturbation in mice: Early life exposure to doxycycline

Journal

CHEMOSPHERE
Volume 222, Issue -, Pages 722-731

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.01.101

Keywords

Antibiotic; Endocrine disrupting chemicals; Mitochondrial dysfunction; Leydig cells; Testosterone

Funding

  1. National agricultural product quality and safety risk assessment [GJFP2019013]
  2. National Natural Science Foundation of China [21307044, 31302009]

Ask authors/readers for more resources

Veterinary tetracyclines drugs are emerging organic pollutants detected at high concentrations in the urine of school children and a potential public health risk. However, the implications of early-life exposure to tetracyclines on testosterone production, being new endocrine disruptors, remain unknown. We investigated whether the early-life exposure to low-doxycycline, a widely used tetracycline, on mitochondria dysfunction and testosterone disruption in Leydig cells in vitro and in vivo. Next, we determined the mRNA levels of testis cells markers for early-life exposure to low-doxycycline outcomes of testis health in later-life. Finally, we compared the weight gain performance exposed to low- and therapeutic-doses through 15 weeks and examined the role of the microbiota during development. Our results showed doxycycline disturbed steroidogenesis process by mitochondrial dysfunction in mouse Leydig tumor cell line (MLTC-1) cells in vitro. Leydig cells mitochondrial function was disrupted by early-life exposure to low-doxycycline from birth to 49 days, causing testosterone deficiency and decreased quality of the sperm in mice. Early-life exposure to low-doxycycline significantly altered the mRNA levels of key genes in Leydig cells (Cyp11a1, Cyp17a1 and 17 beta-HSD) and spermatogenic cells (Grfal, Plzf, and Stra8) in later-life in mice. Subchronic low- and therapeutic-doses doxycycline changed gut microbiota differences in diversity reduction and compositional alteration. Moreover, the weight gain effects of doxycycline were only observed in low-dose in male mice. Overall, these results provide insight into the effects of doxycycline on both testis and gut microbiota health. The results provide insight that envi- ronmental antibiotics are needed additional research to classify as ECDs. (C) 2019 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available