4.7 Article

Sewage sludge-derived TiO2/Fe/Fe3C-biochar composite as an efficient heterogeneous catalyst for degradation of methylene blue

Journal

CHEMOSPHERE
Volume 215, Issue -, Pages 101-114

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2018.10.027

Keywords

TiO2/Fe/Fe3C-Biochar; Sewage sludge-derived catalyst; Heterogeneous catalyst; Catalytic degradation; Methylene blue

Funding

  1. National Natural Science Foundation of China [41672144, 41402133]
  2. Key Program for Science and Technology Development of Anhui Province [1804b06020358]

Ask authors/readers for more resources

Novel TiO2/Fe/Fe3C-biochar composite, as a heterogeneous catalyst, has been synthesized by a single-step route, where sewage sludge (SS) and different ratios of nanoparticles (NPs: Fe and Ti) impregnated with chitosan using coagulation and flocculation techniques for subsequent thermal decomposition at 800 degrees C. The physiochemical properties of samples have been characterized thoroughly and employed in methylene blue (MB) degradation tests. It was found that NPs ratio and chitosan support have significant influences on the properties and catalytic activity of catalysts. Chitosan inclusion successfully improves the surface area and mesoporosity of composites, while high contents of Fe integration reduce surface area and active site (Fe3C) due to Fe-0 agglomeration. Though, Ti incorporation produces Ti3+ that activated photosensitivity. Catalyst with the high mesoporous surface, Ti3+ , selective Fe3C, and small Fe-0 shows superior MB removal competency through concurrent adsorption, photodegradation, and H2O2 activation. Primarily center dot OH and some O-2(center dot-) radicles participating in the degradation reactions evident from scavenging experiments. The maximum MB removal capacity evaluated as 376.9 mg L-1 in neutral pH. Moreover, the catalyst exhibits excellent material stability, recyclability, easy separability, and low Fe-ion leaching (0.11 mg L-1 ) after catalysis. This study provided new insight into a low-cost and environmentally friendly route of catalyst synthesis using SS, NPs, and chitosan, which concurrently advantageous to SS disposal and wastewater treatment. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available