4.7 Article

Ages and sources of mantle eclogites: ID-TIMS and in situ MC-ICPMS Pb-Sr isotope systematics of clinopyroxene

Journal

CHEMICAL GEOLOGY
Volume 503, Issue -, Pages 15-28

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chemgeo.2018.10.007

Keywords

Mantle eclogite xenoliths; U-Pb-Sr isotopes; Age dating; Trace elements; Archaean oceanic crust

Funding

  1. Deutsche Forschungsgemeinschaft [AU356/8, AU356/10]
  2. NSERC
  3. Department of Science and Technology, Republic of South Africa under their Research Chairs Initiative
  4. Centre of Excellence for Integrated Mineral and Energy Resource Analysis (CIMERA) at the University of Johannesburg

Ask authors/readers for more resources

Strontium and Pb isotopic compositions of clinopyroxene (cpx) in selected samples from three well-characterised eclogite suites with oceanic crustal protoliths (Lace/Kaapvaal craton, Orapa/Zimbabwe craton and Koidu/West African craton) were acquired by high-precision isotope dilution thermal ionisation mass spectrometry (ID-TIMS) and in situ multicollector-laser ablation-inductively-coupled plasma mass spectrometry (MC-LA-ICPMS). The aims of this study are twofold: (1) assess their utility to obtain formation or resetting age constraints and identify elemental signatures that enhance the chances of successful age dating, and (2) to confirm the veracity and utility of results obtained by novel MC-LA-ICPMS techniques. Strontium-Pb isotope systematics of eclogitic cpx measured in this study are decoupled and may reflect addition of unsupported radiogenic Sr during seawater alteration or interaction with oceanic sediments in subduction melanges, and/or disturbance due to mantle metasomatism, to which the more incompatible Pb is more susceptible. Despite a complex history, subsets of samples yield meaningful model dates. Clinopyroxene fractions from Lace with high Pb contents (3-6 ppm), unradiogenic Pb isotopic compositions (Pb-206/Pb-204 = 13.57-13.52) and low U-238/Pb-204 (1.0-1.5) give single-stage model Pb dates of 2.90-2.84 Ga. In contrast, samples from Orapa plot to the right of the Geochron and do not yield meaningful Pb model ages. However, these data do define secondary isochrons that can be modelled to yield minimum age constraints on major events affecting the cratonic lithosphere. Within the uncertainties, the resultant 2.18 +/- 0.45 Ga age obtained for Koidu eclogites reflect disturbance of the Pb isotope system due to subduction beneath the craton linked to the Eburnean orogeny, while they retained their unradiogenic Sr-87/Sr-86 (0.7016). Similarly, the age for samples from Orapa (2.20 +/- 0.54 Ga) is interpreted as an overprint age related to Palaeoproterozoic accretion at the western craton margin. Gabbroic eclogites (Eu/Eu* > 1) with plagioclase-rich protoliths having low time-integrated Rb/Sr and U/Pb retain the least radiogenic Sr and, in part, Pb. High model mu (9.0 to 9.1) for several eclogites from Lace with elevated LREE, Th and Pb abundances reflects ca. 3.0 Ga addition of a sedimentary component, possibly derived from reworking of a high-mu basaltic protocrust, as observed on other cratons. We suggest that sample targeting can be usefully guided by fast-throughput in situ LA-ICPMS techniques, which largely yield results identical to ID-TIMS, albeit at lower precision, and which can further help identify kimberlite contamination in the mineral separates used for solution work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available