4.5 Article

Hydrodynamic study of a phosphate flotation cell by CFD approach

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cep.2018.11.012

Keywords

Flotation; Phosphate; Multiphase flow; CFD; Eulerian-Eulerian

Ask authors/readers for more resources

The flotation is a widely used separation process. Its efficiency is evaluated essentially through the purification and mass recovery yields. Since this unit operation occurs in liquid medium in the presence of air, the involved interactions are highly influenced by the hydrodynamics flow parameters. Therefore, a rigorous hydrodynamic investigation is required to ensure an optimal performance [1,2]. In this work, the key hydrodynamic parameters that impact the flotation efficiency were investigated. For this purpose, we assimilated the flotation cell to a stirred tank, then we treated two separate cases of hydrodynamic flow using the computational fluid dynamics (CFD) approach. The first one is the single phase flow and the second is the multiphase flow where we took into consideration phosphate rock (solid particles) suspended in the liquid phase (water). To model and study this kind of complex hydrodynamic flows, we adopted the Eulerian-Eulerian approach, which allowed us to investigate the principal hydrodynamics criteria that can afford optimal operating parameters. These parameters are: the dissipated power, the pumping flow, the number of power, the number of pumping, the mixing time and solid homogenization in the flotation cell fluid sheath. For these performance criteria, the CFD results are in good agreement with those published in experimental studies [3,4].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available