4.4 Article

Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of Chlamydomonas reinhardtii Cryptochrome

Journal

CHEMBIOCHEM
Volume 20, Issue 7, Pages 940-948

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbic.201800660

Keywords

biophysics; cofactors; cryptochromes; flavin radicals; photochemistry; photolyases

Funding

  1. National Natural Science Foundation of China [30900243, 31170005, 31570010]
  2. Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province
  3. University Natural Science Research Project of Anhui Province [KJ2016A731]

Ask authors/readers for more resources

Plant cryptochromes (CRYs) are blue-light receptors that regulate light-dependent growth, development, and circadian rhythms. A flavin adenine dinucleotide (FAD) cofactor is bound to the photolyase homology region (PHR) of plant CRYs and can be photoreduced to a neutral radical state under blue light. This photoreaction can trigger subsequent signal transduction. Plant CRYs can also bind an ATP molecule adjacent to FAD in a pocket of the PHR. Chlamydomonas reinhardtii contains a single plant CRY, named Chlamydomonas photolyase homologue 1 (CPH1). In CPH1, Cys392 and Asp393 are located near the FAD cofactor. Here we have shown that replacing Cys392 with Ser has little effect on the properties of CPH1. The C392N mutant, however, showed a faster photoreduction rate than wild-type CPH1, together with a significantly lower oxidation rate of the neutral radical state. Substituting an Asn residue for Asp393 in CPH1 improved the binding affinity for FAD as well as the stability of the neutral radical, but photoreduction in the case of this mutant was severely inhibited. In the presence of ATP, CPH1 and its mutants exhibited significantly higher binding affinity for FAD and slower oxidation of the neutral radical. These results reveal that the residues at site 392 and the presence of ATP can tune the stability of the neutral radical, that the Asp residue at site 393 is crucial for photoreduction, and that the photoreduction rate is not determined merely by the stability of the neutral radical in CPH1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available