4.5 Article

FBXW7 modulates malignant potential and cisplatin-induced apoptosis in cholangiocarcinoma through NOTCH1 and MCL1

Journal

CANCER SCIENCE
Volume 109, Issue 12, Pages 3883-3895

Publisher

WILEY
DOI: 10.1111/cas.13829

Keywords

cholangiocarcinoma; cisplatin; FBXW7 protein; myeloid cell leukemia sequence 1 protein; NOTCH1 protein

Categories

Funding

  1. Japan Society for the Promotion of Science [16K19910, 26861058]

Ask authors/readers for more resources

The ubiquitin ligase F-box and WD repeat domain-containing 7 (FBXW7) is responsible for degrading diverse oncoproteins and is considered a tumor suppressor in many human cancers. Inhibiting FBXW7 enhances the malignant potential of several cancers. In this study, we aimed to investigate the role of FBXW7 in cholangiocarcinoma. We found that FBXW7 expression was associated with clinicopathological outcomes in cholangiocarcinoma patients. Both disease-free and overall survival were significantly worse in the low-FBXW7 group than in the high-FBXW7 group (P = .001 and P < .001, respectively). Multivariate analysis with the Cox proportional hazards model indicated that FBXW7 was the most important independent prognostic factor for disease-free (P = .006) and overall (P = .0004) survival. We also showed that the two FBXW7 substrates, NOTCH1 and myeloid cell leukemia sequence 1 (MCL1), regulate cholangiocarcinoma progression. Depletion of FBXW7 resulted in NOTCH1 accumulation and increased cholangiocarcinoma cell migration and self-renewal. Interestingly, when cells were stimulated with cis-diamminedichloridoplatinum(II) (cisplatin), FBXW7 suppression induced MCL1 upregulation, which reduced the sensitivity of cholangiocarcinoma cells to apoptosis, indicating that FBXW7-mediated ubiquitylation is context-dependent. These results indicate that FBXW7 modulates the malignant potential of cholangiocarcinoma through independent regulation of NOTCH1 and MCL1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available