4.7 Article

Workload Prediction Using ARIMA Model and Its Impact on Cloud Applications' QoS

Journal

IEEE TRANSACTIONS ON CLOUD COMPUTING
Volume 3, Issue 4, Pages 449-458

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCC.2014.2350475

Keywords

Cloud computing; workload prediction; ARIMA

Ask authors/readers for more resources

As companies shift from desktop applications to cloud-based software as a service (SaaS) applications deployed on public clouds, the competition for end-users by cloud providers offering similar services grows. In order to survive in such a competitive market, cloud-based companies must achieve good quality of service (QoS) for their users, or risk losing their customers to competitors. However, meeting the QoS with a cost-effective amount of resources is challenging because workloads experience variation over time. This problem can be solved with proactive dynamic provisioning of resources, which can estimate the future need of applications in terms of resources and allocate them in advance, releasing them once they are not required. In this paper, we present the realization of a cloud workload prediction module for SaaS providers based on the autoregressive integrated moving average (ARIMA) model. We introduce the prediction based on the ARIMA model and evaluate its accuracy of future workload prediction using real traces of requests to web servers. We also evaluate the impact of the achieved accuracy in terms of efficiency in resource utilization and QoS. Simulation results show that our model is able to achieve an average accuracy of up to 91 percent, which leads to efficiency in resource utilization with minimal impact on the QoS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available