4.7 Article

High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations

Journal

BRAIN
Volume 142, Issue -, Pages 23-34

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/brain/awy307

Keywords

tumour-related somatic mutation; KRAS; BRAF; arteriovenous malformations

Funding

  1. National Key R&D Program of China [2016YFC1300800, 2017YFC0909400]
  2. National Natural Science Foundation of China [81671202, 81701151, 81770424]
  3. Beijing Municipal Science and Technology Commission [D161100003816001, D161100003816006]
  4. Beijing Municipal Administration of Hospitals' Ascent Plan [DFL20180801]
  5. Innovation Fund for Medical Sciences [CAMS2017-I2M-1-008]
  6. Chinese Academy of Medical Sciences

Ask authors/readers for more resources

The genetic basis of many brain and spinal arteriovenous malformations is unclear. Hong et al. reveal a causative role for somatic tumour-related mutations in KRAS/BRAF in the majority of patients tested. This homogeneity supports therapeutic targeting of the RAS/RAF/MAPK pathway without the need for tissue genetic diagnosis.Brain and spinal arteriovenous malformations are congenital lesions causing intracranial haemorrhage or permanent disability especially in young people. We investigated whether the vast majority or all brain and spinal arteriovenous malformations are associated with detectable tumour-related somatic mutations. In a cohort of 31 patients (21 with brain and 10 with spinal arteriovenous malformations), tissue and paired blood samples were analysed with ultradeep next generation sequencing of a panel of 422 common tumour genes to identify the somatic mutations. We used droplet digital polymerase chain reaction to confirm the panel sequenced mutations and identify the additional low variant frequency mutations. The association of mutation variant frequencies and clinical features were analysed. The average sequencing depth was 1077 298. High prevalence (87.1%) of KRAS/BRAF somatic mutations was found in brain and spinal arteriovenous malformations with no other replicated tumour-related mutations. The prevalence of KRAS/BRAF mutation was 81.0% (17 of 21) in brain and 100% (10 of 10) in spinal arteriovenous malformations. We detected activating BRAF mutations and two novel mutations in KRAS (p.G12A and p.S65_A66insDS) in CNS arteriovenous malformations for the first time. The mutation variant frequencies were negatively correlated with nidus volumes of brain (P = 0.038) and spinal (P = 0.028) arteriovenous malformations but not ages. Our findings support a causative role of somatic tumour-related mutations of KRAS/BRAF in the overwhelming majority of brain and spinal arteriovenous malformations. This pathway homogeneity and high prevalence implies the development of targeted therapies with RAS/RAF pathway inhibitors without the necessity of tissue genetic diagnosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available