4.6 Article

An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize

Journal

BMC MICROBIOLOGY
Volume 19, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12866-018-1374-6

Keywords

Y; lipolytica FH1; Salt stress; Indole-3-acetic acid; Abscisic acid; Phenols; Flavonoids; Maize

Categories

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [2017R1D1A1B04035601]

Ask authors/readers for more resources

BackgroundTo combat salinity, plants need easily accessible, safe and sustainable mechanisms for optimum growth. Recently, endophytes proved to be the promising candidates that helped the host plant to thrive under stress conditions. Therefore, the aim was to discover endophytic strain(s) and their mechanism of action to alleviate salt stress in maize.ResultsKeeping the diverse role of endophytes in view, 9 endophytic fungi from the spines of Euphorbia milli L. were isolated. Among the isolated fungal isolates, isolate FH1 was selected for further study on the basis of high antioxidant activity and capability to produce high indole-3-acetic acid (IAA), indole-3-acetamide (IAM), phenol and flavonoid contents. The 18S rDNA sequence homology and phylogenetic analysis of the fungal isolate FH1 revealed to be Yarrowia lipolytica. Furthermore, the inoculation of Y. lipolytica FH1 had significantly promoted plant growth attributes in treated maize as compared to positive (salt stress) and negative (salt stress free) controls. Likewise, differences in chlorophyll, carotenes, electrolyte leakage, leaf relative water, peroxidase, catalase, ABA, IAA and proline contents were observed between treated maize and controls. Interestingly, Y. lipolytica FH1 inoculated plants showed lower endogenous ABA and higher endogenous IAA contents.ConclusionFrom the results, we have concluded that Y. lipolytica inoculation has promoted the growth of maize plants through controlled metabolism and hormonal secretions (ABA and IAA) under salinity stress. Because of the fact, Y. lipolytica can be tried as an eco-friendly bio-fertilizer to achieve optimum crop productivity under saline conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available