4.6 Article

Creation and validation of a reactor engineering model for multiphase red wine fermentations

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 116, Issue 4, Pages 781-792

Publisher

WILEY
DOI: 10.1002/bit.26874

Keywords

bioprocess engineering; fermentation kinetics; heat transfer; modeling; red wine

Funding

  1. Ernest Gallo Endowed Chair in Viticulture and Enology
  2. American Vineyard Foundation [2209]

Ask authors/readers for more resources

Red wine fermentations are performed in the presence of grape skins and seeds to ensure the extraction of color and other phenolics. The presence of these solids results in two distinct phases in the fermentor, as the solids float to the top to form a cap. Modeling of red wine fermentation is, therefore, complex and must consider spatial heterogeneity to predict fermentation kinetics. We have developed a reactor-engineering model for red wine fermentations that includes the fundamentals of fermentation kinetics, heat transfer, diffusion, and compressible fluid flow. To develop the heat transfer component of the model, the heat transfer properties of grapes were experimentally determined as a function of fermentation progression. COMSOL was used to solve all components of the model simultaneously utilizing a finite element analysis approach. Predictions from this model were validated using prior experimental work. Model prediction and experimental data showed excellent agreement. The model was then used to predict spatial profiles of active yeast cell concentration and ethanol productivity, as well as liquid velocity profiles. Finally, the model was used to predict how these gradients would change with differences in initial bioavailable nitrogen concentration, a key parameter in predicting fermentation outcome in nitrogen-limited wine fermentations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available