4.8 Article

Exploiting electrostatic shielding-effect of metal nanoparticles to recognize uncharged small molecule affinity with label-free graphene electronic biosensor

Journal

BIOSENSORS & BIOELECTRONICS
Volume 129, Issue -, Pages 93-99

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2018.12.051

Keywords

Uncharged small molecule; Competitive affinity; Metal nanoparticle analogue; Electrostatic shielding-effect; Graphene field-effect transistor biosensor

Funding

  1. Technology Research & Development Program of Guangxi Zhuang Autonomous Region, China [AB17129007]
  2. Natural Science Foundation of Tianjin City, China [18JCYBJC86000]
  3. Funding Program of Tianjin Higher Education Creative Team
  4. Science & Technology Development Fund of Tianjin Education Commission for Higher Education, China [2018KJ153]
  5. Distinguished Young Talent Recruitment Program of Tianjin Normal University, China [011/5RL153]
  6. MAINZ Excellence Initiative Fellowship, Germany [GSC266]

Ask authors/readers for more resources

Label-free electronic biosensors as the non-electrochemical analytical tools without requirement of sophisticated instrumentation have become attractive, although their application in competitive affinity sensing of uncharged small molecules is still hindered by a difficulty in the development of competing analogues. To break through this bottleneck, we report a novel analogue made by epitope-modified metal nanoparticles to enable the electronic signaling of small-molecule analyte recognition via competitive affinity. While the electronic signaling capability of metal nanoparticle analogues is demonstrated by a graphene field-effect transistor bioassay of small-molecule glucose as a proof-of-principle, interestingly, we discover a new electronic signaling mechanism in the metal nanoparticle affinity, different to the intuitive charge accumulation expectation. On the basis of Kelvin-probe force microscopic potential characterization and theoretical discussion, we fundamentally elucidated the signaling mechanism as a seldom used electrostatic shielding-effect, that is, in the analogue-receptor affinity, metal nanoparticles with the charge density lower than receptor biomolecules can reduce the collective electrical potential via charge dispersion. Further consider the convenient epitope-modifiability of metal nanoparticles, the easy-to-develop analogues for diverse target analyte might potentially be predictable in the future. And the application of label-free electronic biosensors for the competitive affinity bioassay of range extended small molecules may thus be promoted based on the electrostatic shielding-effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available