4.6 Article

Application of a deep convolutional neural network in the diagnosis of neonatal ocular fundus hemorrhage

Journal

BIOSCIENCE REPORTS
Volume 38, Issue -, Pages -

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BSR20180497

Keywords

-

Funding

  1. National Key Research and Development Program of China [2016YFC1000307]
  2. National Science and Technology Basic Work [2014FY130100]
  3. CAS Pioneer Hundred Talents Program [2017-074]

Ask authors/readers for more resources

There is a disparity between the increasing application of digital retinal imaging to neonatal ocular screening and slowly growing number of pediatric ophthalmologists. Assistant tools that can automatically detect ocular disorders may be needed. In present study, we develop a deep convolutional neural network (DCNN) for automated classification and grading of retinal hemorrhage. We used 48,996 digital fundus images from 3770 newborns with retinal hemorrhage of different severity (grade 1, 2 and 3) and normal controls from a large cross-sectional investigation in China. The DCNN was trained for automated grading of retinal hemorrhage (multiclass classification problem: hemorrhage-free and grades 1, 2 and 3) and then validated for its performance level. The DCNN yielded an accuracy of 97.85 to 99.96%, and the area under the receiver operating characteristic curve was 0.989-1.000 in the binary classification of neonatal retinal hemorrhage (i.e., one classification vs. the others). The overall accuracy with regard to the multiclass classification problem was 97.44%. This is the first study to show that a DCNN can detect and grade neonatal retinal hemorrhage at high performance levels. Artificial intelligence will play more positive roles in ocular healthcare of newborns and children.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available