4.7 Article

Reversible Self-Assembly Nanovesicle of UCST Response Prepared with Multi-L-arginyl-poly-L-aspartate Conjugated with Polyethylene Glycol

Journal

BIOMACROMOLECULES
Volume 19, Issue 12, Pages 4585-4592

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.8b01274

Keywords

-

Funding

  1. Ministry of Science and Technology at Taiwan [MOST 107-2221-E-011-063]

Ask authors/readers for more resources

Multi-L-arginyl-poly-L-aspartate (MAPA), also known as cyanophycin, containing a backbone of polyaspartate with arginine and lysine as side chains, was prepared with recombinant Escherichia coli. The insoluble part (iMAPA) was conjugated with polyethylene glycol (PEG) at two different levels, high (iMAPA(PEG)h) and low (iMAPA(PEG)1). Both levels of conjugation exhibited UCST (upper critical solution temperature)-type responses in the pH range of 3-10 at a concentration of 2 mg/mL. The cloud-point temperature of each conjugate also showed a positive correlation with concentration in PBS, falling between 20 to 58 degrees C at a concentration from 0.1 to 3 mg/mL. Hysteresis was observed to follow approximate paths under. the same condition during repeated heating and cooling. Notably, the reversible formation of core-shell vesicles appeared at room temperature in PBS with a size of around 25 to 60 nm, as measured by DLS and observed under TEM. The reversibility was further employed to encapsulate doxorubicin (Dox) at different weight ratios of Dox to iMAPA(PEG)h. An encapsulation efficiency could reach as high as 70% with an equivalent loading capacity of 1.5 mg Dox/mg iMAPA(PEG)h. The Dox-loaded vesicles stayed stable at 4 degrees C for up to 4 weeks, with a minimal leakage below 2% and a slightly dilated morphology. Temperature-triggered release of Dox from the vesicles could be achieved by a step change of 5 degrees C successively from 37 to 62 degrees C in an effort to induce an initial 10% release at 37 degrees C gradually to complete release at 62 degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available