4.6 Article

Extracellular αB-crystallin modulates the inflammatory responses

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2018.11.024

Keywords

alpha B-crystallin; Exosome; EAE; Astrocyte; Microglia; Inflammation

Funding

  1. National Natural Science Foundation of China [31430036, 31321091, 91742116]
  2. National Key Basic Research Program of China [2015CB553500]

Ask authors/readers for more resources

Neuroinflammation is considered a challenging clinical problem. Chronic inflammatory responses play important roles in the onset and progression of various neurodegenerative diseases, including multiple sclerosis (MS). Previous studies have shown that astrocytes express small heat shock protein alpha B-crystallin (CRYAB) which is capable of inhibiting inflammatory responses in astrocytes per se. However, the underlying mechanisms of CRYAB-induced modulation of neuroinflammation are still not fully understood. In the present study, we investigated the role of extracellular CRYAB in the interaction between microglia and astrocytes in the context of MS-associated neuroinflammation. We found that the expression of CRYAB was profoundly increased in EAE mice. CRYAB was preferentially expressed in astrocytes and could be secreted via exosomes. Levels of exosomal CRYAB secreted from astrocytes were markedly increased under stress conditions. Furthermore, incubation of immortalized astrocytes or microglia cell lines with CRYAB remarkably suppressed astrocytes and microglia-mediated inflammatory responses in both autocrine and paracrine manners. Our results reveal a novel function for extracellular CRYAB in the regulation of neuroinflammation. Targeting extracellular CRYAB-modulated neuroinflammation is a potential therapeutic intervention for MS. (C) 2018 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available