4.6 Article

miR-9-5p inhibits pancreatic cancer cell proliferation, invasion and glutamine metabolism by targeting GOT1

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2018.12.114

Keywords

Pancreatic cancer; GOT1; miR-9-5p; Glutamine metabolism

Funding

  1. Key Projects of Wuhan City [WX16B20]

Ask authors/readers for more resources

MicroRNAs (miRNAs) play crucial roles in the pancreatic carcinogenesis and progression. In the present study, we found that miR-9-5p was significantly downregulated in pancreatic cancer tissues and cell lines. The expression levels of miR-9-5p were negatively correlated with tumor stage and vessel invasion. Log-rank tests demonstrated that low expression of miR-9-5p was strongly correlated with poor overall survival in pancreatic cancer patients. Moreover, overexpression of miR-9-5p remarkably inhibited pancreatic cancer cell proliferation by enhancing cell apoptosis and significantly suppressed the invasion of pancreatic cancer cells, whereas low expression of miR-9-5p exhibited the opposite effect. Bioinformatics analysis revealed that GOT1 was a potential target of miR-9-5p, and miR-9-5p inhibited the expression level of GOT1 mRNA by direct binding to its 3'-untranslated region (3'UTR). Expression of miR-9-5p was negatively correlated with GOT1 in pancreatic cancer tissues. Moreover, modulation of miR-9-5p expression could affect the glutamine metabolism and redox homeostasis in pancreatic cancer cells. Furthermore, downregulation of GOT1 counteracted the effects of miR-9-5p repression, whereas its overexpression reversed tumor inhibitory effects of miR-9-5p. Collectively, this study suggested that miR-9-5p regulates GOT1 expression in pancreatic cancer, thereby stunting proliferation, invasion, glutamine metabolism and redox homeostasis, and that miR-9-5p may serve as a prognostic or therapeutic target for pancreatic cancer. (C) 2018 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available