4.6 Article

Insights on bar quenching from a multiwavelength analysis: The case of Messier 95

Journal

ASTRONOMY & ASTROPHYSICS
Volume 621, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201834500

Keywords

galaxies: star formation; galaxies: evolution; galaxies: formation; ultraviolet: galaxies; galaxies: individual: Messier 95

Funding

  1. Science and Engineering Research Board, India
  2. Alfred P. Sloan Foundation
  3. National Science Foundation
  4. US Department of Energy Office of Science
  5. University of Arizona
  6. Brazilian Participation Group
  7. Brookhaven National Laboratory
  8. Carnegie Mellon University
  9. French Participation Group
  10. German Participation Group
  11. Harvard University
  12. Instituto de Astrofisica de Canarias
  13. Michigan State/Notre Dame/JINA Participation Group
  14. Johns Hopkins University
  15. Lawrence Berkeley National Laboratory
  16. Max Planck Institute for Astrophysics
  17. Max Planck Institute for Extraterrestrial Physics
  18. University of Florida
  19. New Mexico State University
  20. New York University
  21. Ohio State University
  22. Pennsylvania State University
  23. University of Portsmouth
  24. Princeton University
  25. Spanish Participation Group
  26. University of Tokyo
  27. University of Utah
  28. Vanderbilt University
  29. University of Virginia
  30. University of Washington
  31. Yale University

Ask authors/readers for more resources

The physical processes related to the effect of bars in the quenching of star formation in the region between the nuclear/central sub-kiloparsec region and the ends of the bar (bar region) of spiral galaxies is not fully understood. It is hypothesized that the bar can either stabilize the gas against collapse, inhibiting star formation, or efficiently consume all the available gas, leaving no fuel for further star formation. We present a multiwavelength study using the archival data of an early-type barred spiral galaxy, Messier 95, which shows signatures of suppressed star formation in the bar region. Using optical, ultraviolet (UV), infrared, CO, and HI imaging data we study the pattern of star formation progression and stellar/gas distribution, and try to provide insights into the process responsible for the observed pattern. The FUV-NUV pixel colour map reveals a cavity devoid of UV flux in the bar region that matches the length of the bar, which is similar to 4.2 kpc. The central nuclear region of the galaxy shows a blue colour clump and along the major axis of the stellar bar the colour progressively becomes redder. Based on a comparison to single stellar population models, we show that the region of galaxy along the major axis of the bar, unlike the region outside the bar, is comprised of stellar populations with ages >= 350 Myr; there is a star-forming clump in the centre of younger ages of similar to 150 Myr. Interestingly the bar region is also devoid of neutral and molecular hydrogen but has an abundant molecular hydrogen present at the nuclear region of the galaxy. Our results are consistent with a picture in which the stellar bar in Messier 95 is redistributing the gas by funnelling gas inflows to nuclear region, thus making the bar region devoid of fuel for star formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available