4.3 Article

Epigallocatechin-3-gallate Enhances Radiation Sensitivity in Colorectal Cancer Cells Through Nrf2 Activation and Autophagy

Journal

ANTICANCER RESEARCH
Volume 38, Issue 11, Pages 6247-6252

Publisher

INT INST ANTICANCER RESEARCH
DOI: 10.21873/anticanres.12980

Keywords

EGCG; radiation; colorectal cancer; Nrf2; autophagy

Categories

Ask authors/readers for more resources

Background/Aim: Epigallocatechin-3-gallate (EGCG) is a major polyphenolic component of green tea. EGCG plays a potential role in radio-sensitizing cancer cells. The combined effect of EGCG and radiation was investigated in a colorectal cancer cell line, focusing on nuclear factor (erythroid-derived 2)-like 2 (Nrf2) autophagy signalling. Materials and Methods: HCT-116 cells were treated with 12.5 ,uM EGCG for different periods of time, 2 Gy radiation, or both. Cell viability was determined with the WST-8 assay. The number of colonies was determined with the colony formation assay. mRNA expression of LC3 and caspase-9 was analyzed with quantitative real-time polymerase chain reaction. Results: Combination treatment with EGCG and radiation significantly decreased the growth of HCT-116 cells. The number of colonies was reduced to 34.2% compared to the control group. Immunofluorescence microscopy images showed that nuclear translocation of Nrf2 was significantly increased when cells were treated with the combination of EGCG and radiation compared to the control and single-treatment groups. Combined treatment with EGCG and radiation significantly induced LC3 and caspase-9 mRNA expression. Conclusion: EGCG increased the sensitivity of colorectal cancer cells to radiation by inhibiting cell proliferation and inducing Nrf2 nuclear translocation and autophagy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available