4.8 Article

Graphene Aerogel-Metal-Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy-Metal Ions

Journal

ANALYTICAL CHEMISTRY
Volume 91, Issue 1, Pages 888-895

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.8b03764

Keywords

-

Funding

  1. National Natural Science Foundation of China [21675126, 21874108]
  2. Fundamental Research Funds for the Central Universities [2452017178, 2452017003]

Ask authors/readers for more resources

The development of an effective method for detecting heavy-metal ions remains a serious task because of their high toxicity to public health and environments. Herein, a new electrochemical method based on a graphene aerogel (GA) and metal-organic framework (MOF) composites was developed for simultaneous detection of multiple heavy-metal ions in aqueous solutions. The GA-MOF composites were synthesized via the in situ growth of the MOF UiO-66-NH2 crystal on the GA matrix. GA not only serves as the backbone for UiO-66-NH2 but also enhances the conductivity of the composites by accelerating the electron transfer in the matrix. UiO-66-NH2 worked as a binding site for heavy-metal ions because of the interaction between hydrophilic groups and metal cations. The detection performance of the GA-UiO-66-NH2 composite-modified electrodes was determined. The developed electrochemical method can be successfully applied for individual and simultaneous detection of heavy-metal ions, namely, Cd2+, Pb2+, Cu2+, and Hg2+, in aqueous solutions with high sensitivity and selectivity. The method can also be used for simultaneous detection of Cd2+, Pb2+, Cu2+, and Hg2+ in river water and the leaching solutions of soil and vegetable with high accuracy and reliability. This work provides a new approach for simultaneous detection of multiple heavy-metal ions in practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available