4.8 Article

Dynamic Microfluidic Cytometry for Single-Cell Cellomics: High-Throughput Probing Single-Cell-Resolution Signaling

Journal

ANALYTICAL CHEMISTRY
Volume 91, Issue 2, Pages 1619-1626

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.8b05179

Keywords

-

Funding

  1. National Natural Science Foundation of China [21775049, 31700746, 31870856, 31870854]
  2. National Key R&D Program of China [2017YFA0700403, 2016YFF0100801]
  3. China Postdoctoral Science Foundation [2018M630847, 2018T110753]

Ask authors/readers for more resources

Cell signaling is a fast, dynamic, and complex process, which controls a variety of critical physiological functions. Methods to investigate such dynamic information, however, suffer from limited throughput in the single-cell level and a lack of precise fluid manipulation. Herein, we present a new strategy, termed dynamic microfluidic cytometry (DMC), for high-throughput probing of G protein-coupled receptor (GPCR) signaling in single-cell resolution (single-cell cellomics analysis) by creatively applied cyclical cell trapping, stimulating, and releasing automatically. Dose-response curves and half-maximal effective concentration (EC50) values for HeLa cells treated with adenosine triphosphate (ATP), histamine (HA), and acetylcholine chloride (ACH) were successfully obtained in the single-cell level. High-throughput single-cell dynamic signaling was further implemented by sequential or simultaneous stimulation, which revealed that different mechanisms were working in triggering intracellular calcium release. In addition, simultaneous stimulation to two different types of cells, HeLa and NIH-3T3 cells, was also successfully realized, which was crucial for online comparison of dynamic signaling of different types of cells. We believe that the proposed DMC provides a versatile means for high-throughput probing single-cell dynamic signaling, which is potentially useful in chemical biology, cell biology, and pharmacology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available