4.7 Article

Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT:PSS

Journal

ANALYTICA CHIMICA ACTA
Volume 1056, Issue -, Pages 135-145

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2018.12.053

Keywords

PEDOT:PSS; Iron oxide nanoparticles; Electrochemical paper; Biosensor

Funding

  1. CeNSE, Indian Institute of Science, Bengaluru, India
  2. Department of Science and Technology, New Delhi, India [DST/INSPIRE/04/2017/002750, DST/INSPIRE/04/2017/001336]
  3. DST, New Delhi, India [DST/INSPIRE/04/2014/002540]
  4. AKTU, Lucknow, India

Ask authors/readers for more resources

We report results of the studies relating to the fabrication of a label-free, flexible, light weight and disposable conducting paper based immunosensing platform comprising of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and nanostructured iron oxide (nFe(2)O(3)@PEDOT:PSS) nanocomposite for detection of carcinoembryonic antigen (CEA), a cancer biomarker. The effect of various solvents such as sorbitol, ethanol, propanol, n-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO) on the electrical conductivity of Whatman filter paper (WP) modified with nFe(2)O(3)@PEDOT:PSS/WP was investigated. The electrical conductivity of the PEDOT:PSS/WP electrode was found to be enhanced by two orders of magnitude (from 6.8 x 10(-4) to 1.92 x 10(-2) Scm(-1)) after its treatment with DMSO. Further, nFe(2)O(3) doped PEDOT:PSS/WP electrode exhibited the electrical conductivity as 2.4 x 10(-2) Scm(-1). Besides this, the incorporation of iron oxide nanoparticles (nFe(2)O(3)) into PEDOT:PSS/ WP resulted in improved electrochemical performance and signal stability. This nFe(2)O(3)@ PEDOT:PSS/WP based platform was used for immobilization of the anti-carcinoembronic antigen (anti-CEA) protein for quantitative estimation of cancer biomarker (CEA). The results of electrochemical response studies revealed that this conducting paper based immunoelectrode had a sensitivity of 10.2 mu Ang(-1) mLcm(-2) in the physiological range (4-25 ngmL(-1)) and shelf life of 34 days. Further, the proposed immunoelectrode was validated with conventional ELISA for the detection of CEA in serum samples of cancer patients. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available