4.1 Article

Molecular phylogenetics reveals a complex history underlying cryptic diversity in the Bush Squeaker Frog (Arthroleptis wahlbergii) in southern Africa

Journal

AFRICAN ZOOLOGY
Volume 53, Issue 3, Pages 83-97

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/15627020.2018.1517608

Keywords

Afrotemperate forest; amphibians; barcoding; cryptic species; refugia

Categories

Funding

  1. National Research Foundation of South Africa [NRF-GUN 74454]
  2. South African National Biodiversity Institute

Ask authors/readers for more resources

Throughout the Miocene, the African landscape underwent broad climatic shifts that profoundly influenced the distribution of fauna and flora. Since the late Miocene, these shifts have created a landscape in southern Africa that is strongly characterised by savanna and arid environments. Forests persist in small fragments, primarily in mountainous or heterogeneous landscapes. Arthroleptis wahlbergii is a small frog endemic to eastern South Africa that has presumed low dispersal ability. Because of its preference for forests, the dynamics of forests since the late Miocene in this region might have promoted diversification within A. wahlbergii. To investigate whether habitat fragmentation might have driven divergences among populations, we carried out species distribution modelling and population level and phylogenetic analyses using two genetic loci (16S, mitochondrial; RAG-1, nuclear) sequenced for 48 individuals from 14 forests across the c. 500 km range of this species. There is substantial population-level structuring within A. wahlbergii, however the structure does not relate to forest types or catchments. We instead propose that the structure is a result of dynamic and idiosyncratic changes in forest connectivity over the Pleistocene. We identified two geographically circumscribed clades, the northern of which corresponds to true A. wahlbergii. The southern clade corresponds to populations from which Arthroleptis wageri FitzSimons, 1930 was described. This has long been considered a synonym of A. wahlbergii, but our molecular phylogenetic and distribution modelling supports recognising A. wageri as a distinct species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available