4.8 Article

An Artificial Nocturnal Flower via Humidity-Gated Photoactuation in Liquid Crystal Networks

Journal

ADVANCED MATERIALS
Volume 31, Issue 2, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201805985

Keywords

actuator; azobenzene; bioinspired; humidity; light; liquid crystal; multi-responsive

Funding

  1. European Research Council [679646]
  2. Graduate School of Tampere University of Technology (TUT)
  3. International HR Services of TUT
  4. Academy of Finland [316416]

Ask authors/readers for more resources

Beyond their colorful appearances and versatile geometries, flowers can self-shape-morph by adapting to environmental changes. Such responses are often regulated by a delicate interplay between different stimuli such as temperature, light, and humidity, giving rise to the beauty and complexity of the plant kingdom. Nature inspires scientists to realize artificial systems that mimic their natural counterparts in function, flexibility, and adaptation. Yet, many of the artificial systems demonstrated to date fail to mimic the adaptive functions, due to the lack of multi-responsivity and sophisticated control over deformation directionality. Herein, a new class of liquid-crystal-network (LCN) photoactuators whose response is controlled by delicate interplay between light and humidity is presented. Using a novel deformation mechanism in LCNs, humidity-gated photoactuation, an artificial nocturnal flower is devised that is closed under daylight conditions when the humidity level is low and/or the light level is high, while it opens in the dark when the humidity level is high. The humidity-gated photoactuators can be fueled with lower light intensities than conventional photothermal LCN actuators. This, combined with facile control over the speed, geometry, and directionality of movements, renders the nocturnal actuator promising for smart and adaptive bioinspired microrobotics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available