4.8 Review

Large-Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods

Journal

ADVANCED MATERIALS
Volume 31, Issue 45, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201805089

Keywords

large-area devices; modular design; organic solar cells; printing; thick film

Funding

  1. Ministry of Science and Technology [2016YFA0200700]
  2. National Natural Science Foundation of China [21534003, 51773047, 21604017]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA0909040201]

Ask authors/readers for more resources

The printing of large-area organic solar cells (OSCs) has become a frontier for organic electronics and is also regarded as a critical step in their industrial applications. With the rapid progress in the field of OSCs, the highest power conversion efficiency (PCE) for small-area devices is approaching 15%, whereas the PCE for large-area devices has also surpassed 10% in a single cell with an area of approximate to 1 cm(2). Here, the progress of this fast developing area is reviewed, mainly focusing on: 1) material requirements (materials that are able to form efficient thick active layer films for large-area printing); 2) modular designs (effective designs that can suppress electrical, geometric, optical, and additional losses, leading to a reduction in the PCE of the devices, as a consequence of substrate area expansion); and 3) printing methods (various scalable fabrication techniques that are employed for large-area fabrication, including knife coating, slot-die coating, screen printing, inkjet printing, gravure printing, flexographic printing, pad printing, and brush coating). By combining thick-film material systems with efficient modular designs exhibiting low-efficiency losses and employing the right printing methods, the fabrication of large-area OSCs will be successfully realized in the near future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available