4.8 Article

Nucleation-Controlled Solution Deposition of Silver Nanoplate Architectures for Facile Derivatization and Catalytic Applications

Journal

ADVANCED MATERIALS
Volume 30, Issue 51, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201805179

Keywords

autocatalytic deposition; heterogeneous catalysis; nanoplates; nanostructure derivatization; silver

Funding

  1. German Research Foundation [MU 4125/1-1]
  2. B.H. a Georg Lichtenberg scholarship of the RTG Nano- and Energy Research
  3. Minerva Foundation
  4. German Ministry of Education and Research
  5. [FKZ 03SF0539]

Ask authors/readers for more resources

Due to their distinctive electronic, optical, and chemical properties, metal nanoplates represent important building blocks for creating functional superstructures. Here, a general deposition method for synthesizing Ag nanoplate architectures, which is compatible with a wide substrate range (flexible, curved, or recessed; consisting of carbon, silicon, metals, oxides, or polymers) is reported. By adjusting the reaction conditions, nucleation can be triggered in the bulk solution, on seeds and by electrodeposition, allowing the production of nanoplate suspensions as well as direct surface modification with open-porous nanoplate films. The latter are fully percolated, possess a large, easily accessible surface, a defined nanostructure with {111} basal planes, and expose defect-rich, particularly reactive edges in high density, making them compelling platforms for heterogeneous catalysis, and electro- and flow chemistry. This potential is showcased by exploring the catalytic performance of the nanoplates in the reduction of carbon dioxide, 4-nitrophenol, and hydrogen peroxide, devising two types of microreactors, and by tuning the nanoplate functionality with derivatization reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available