4.8 Article

Bulk Photodriven CO2 Conversion through TiO2@Si(HIPE) Monolithic Macrocellular Foams

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 29, Issue 9, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201807767

Keywords

CO2 photoreduction; heterogeneous catalysis; integrative chemistry; porous materials; sol-gel process

Funding

  1. IFPEN [419398/CNRS129590]

Ask authors/readers for more resources

Operating photo-induced reactions exclusively on catalyst surfaces while not exploiting the full catalyst volume generates a major footprint penalty for the photocatalytic reactor and leads to an inefficient use of the catalytic material. Photonic investigations clearly show that the solid foams have a strongly multidiffusive character, with photons being significantly trapped within the sample cores while addressing a photon mean free path l(t) = 20.1 +/- 1.3 mu m. This 3D process both greatly limits back-reactions and promotes outstanding selectivity toward methane (around 80%) generation, and even ethane (around 18%) through C-C coupling reaction, with residual carbon monoxide and dihydrogen contents (around 2%). Silica-titania TiO2@Si(HIPE) self-standing macrocellular catalysts lead to optimal efficient thicknesses up to 20 times those of powders, thereby enhancing the way for real 3D-photodriven catalytic processes above the millimeter scale and up to a 6 mm thickness. A rather simple Langmuir-Hinshelwood based kinetic model is proposed which highlights the strong dependence of photocatalytic reaction rates on light scattering and the crucial role on oxidation back-reactions. In addition, a strong correlation between light attenuation coefficient and photon mean free path and median pore aperture diameter is demonstrated, offering thus a tool for photocatalytic behavior prediction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available