4.6 Article

Multifunctional Non-Equiatomic High Entropy Alloys with Superelastic, High Damping, and Excellent Cryogenic Properties

Journal

ADVANCED ENGINEERING MATERIALS
Volume 21, Issue 1, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adem.201800941

Keywords

high-damping; high entropy alloy; martensite design; multifunction; superelasticity

Ask authors/readers for more resources

A new class of non-equiatomic FeNiCoAlTaB (NCATB) high entropy alloy (HEA) is introduced, which exhibits tunable properties from cryogenic/ambient superelasticity to ultra-high strength through controlling the nature or type of martensite. In the current NCATB-HEA alloy system, depending on the size of gamma'-Ni3Al (L1(2)) precipitates, thin-plate, lenticular, butterfly, and lath-like martensite can form. When thin-plate thermoelastic martensite is favored, a superelastic strain of about 0.025 (ambient) and approximate to 0.01 (cryogenic) is achieved with a high yield stress of approximate to 800 MPa and a high-damping effect (10 times higher than Cu-Al-Ni superelastic alloy). While for butterfly and lath-like martensite dominated NCATB-HEA, an ultra-high yield stress of around 1.1 GPa is achieved while no superelasticity is demonstrated. This current alloy system helps to expand the application domain of HEAs, for example, into high-damping applications, robust actuators, space exploration, and other structural material applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available