4.8 Article

Highly Transparent Conductive Reduced Graphene Oxide/Silver Nanowires/Silver Grid Electrodes for Low-Voltage Electrochromic Smart Windows

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 2, Pages 1969-1978

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b14086

Keywords

silver nanowires; corrosion; oxidation; reduced graphene oxide; electrochromic devices

Funding

  1. National Research Foundation of Korea [NRF-2018R1A1A3A04076752]
  2. Ministry of Education
  3. National Research Foundation of Korea [22A20130000202] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Transparent conductive electrodes (TCEs) based on hybrid structures (silver nanowires) have been compressively reconnoitered in next-generation electronics such as flexible displays, artificial skins, smart windows, and sensors because of their admirable conductivity as well as flexibility, which make them favorable substitutes to replace ITO (indium tin oxide) as a transparent conductor. Nevertheless, silver-based TCEs grieve from poor stability because of the corrosion and oxidation of silver in electrolytes. To overcome these issues, a RGO (reduced graphene oxide) layer on silver was promoted to resolve the difficulties of corrosion and oxidation in the electrolyte. Moreover, we successfully designed and demonstrated low-voltage WO3-based electrochromic devices (ECDs) with fabricated hybrid TCEs. The hybrid electrodes with RGO/silver nanowires/metal grid/PET (RAM) electrode exhibited improvements in the switching stability and optoelectronic properties, such as the sheet resistance (0.714 ohm/sq) as well as optical transparency of 90.9%. The coloration and bleaching behavior of the ECD was observed in an applied low-voltage rave of -1.0 to 0.0 V with a maximum optical difference of 72% at 700 nm, which yielded a coloration efficiency (eta) of similar to 33.4 cm(2)/C. The highly conductive hybrid TCEs exhibit favorable features for numerous embryonic flexible electronics and optoelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available