4.8 Article

Lateral Two-Dimensional Material Heterojunction Photodetectors with Ultrahigh Speed and Detectivity

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 6, Pages 6384-6388

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b19093

Keywords

graphene; 2D material; heterojunction; photodetectors; detectivity; ultrahigh speed

Funding

  1. Ministry of Science and Technology, R.O.C. [104-2112-M-002-026-MY3, 104-2112-M-194-002-MY3]
  2. Academia Sinica in Taiwan

Ask authors/readers for more resources

Lateral heterojunctions in two-dimensional (2D) materials have demonstrated potential for high-performance sensors because of the unique electrostatic conditions at the interface. The increased complexity of producing such structures, however, has prevented their widespread use. We here demonstrate the simple and scalable fabrication of heterojunctions by a one-step synthesis process that yields photodetectors with superior device performance. Catalytic conversion of a solid precursor at optimized conditions was found to produce lateral nanostructured junctions between graphene domains and 3 nm thin amorphous carbon films. Carrier transport in these heterojunctions was found to proceed by minimizing the path through the amorphous carbon barriers, which results in a self-selective Schottky emission process with high uniformity and low emission barriers. We demonstrate the potential of thus produced heterojunctions by realizing a photodetector that combines an ultrahigh detectivity of 10(13) Jones with microsecond response time, which represents the highest performance of 2D material heterojunction devices. These attractive features are retained even for millimeter-scale devices, and the demonstrated ability to produce transparent, patterned, and flexible sensors extends lateral heterojunction sensors toward wearable and large-scale electronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available