4.8 Article

Fifteen Nanometer Resolved Patterns in Selective Area Atomic Layer Deposition-Defectivity Reduction by Monolayer Design

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 44, Pages 38630-38637

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b13896

Keywords

atomic layer deposition; self-assembled monolayers; lithographic materials; photopolymerization; supramolecular chemistry

Funding

  1. IBM Research

Ask authors/readers for more resources

Selective area atomic layer deposition (SA-ALD) offers the potential to replace a lithography step and provide a significant advantage to mitigate pattern errors and relax design rules in semiconductor fabrication. One class of materials that shows promise to enable this selective deposition process are self-assembled monolayers (SAMs). In an effort to more completely understand the ability of these materials to function as barriers for ALD processes and their failure mechanism, a series of SAM derivatives were synthesized and their structure-property relationship explored. These materials incorporate different side group functionalities and were evaluated in the deposition of a sacrificial etch mask. Monolayers with weak supramolecular interactions between components (for example, van der Waals) were found to direct a selective deposition, though they exhibit significant defectivity at and below 100 nm feature sizes. The incorporation of stronger noncovalent supramolecular interacting groups in the monolayer design, such as hydrogen bonding units or pi-pi interactions, did not produce an added benefit over the weaker interacting components. Incorporation of reactive moieties in the monolayer component that enabled the polymerization of an SAM surface, however, provided a more effective barrier, greatly reducing the number and types of defects observed in the selectively deposited ALD film. These reactive monolayers enabled the selective deposition of a film with critical dimensions as low as 15 nm. It was also found that the selectively deposited film functioned as an effective barrier for isotropic etch chemistries, allowing the selective removal of a metal without affecting the surrounding surface. This work enables selective area ALD as a technology through (1) the development of a material that dramatically reduces defectivity and (2) the demonstrated use of the selectively deposited film as an etch mask and its subsequent removal under mild conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available