4.8 Article

Planar Benzofuran Inside-Fused Perylenediimide Dimers for High VOC Fullerene-Free Organic Solar Cells

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 4, Pages 4203-4210

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b19563

Keywords

perylenediimide; benzofuran; planar; high V-OC; fullerene-free solar cell

Funding

  1. National Key Research and Development Program of China [2017YFA0206600]
  2. Key Research Program of Frontier Sciences, Chinese Academy of Sciences [QYZDB-SSW-SLH033]
  3. National Natural Science Foundation of China (NSFC) [51473040, 51673048, 21875052, 21602040, 21504019, 51773046, 51873044]

Ask authors/readers for more resources

Bulk heterojunction organic solar cells based on perylenediimide (PDI) derivatives as electron acceptors have afforded high power conversion efficiency (PCE) but still lagged behind fullerene-based analogues. Design of novel molecular structures by adjusting the PDI ring and/or connection mode remains the breakthrough point to improve the photovoltaic performance. After introducing benzofuran at the inside bay positions and being linked with a single bond and a fluorene unit, mandatory planar PDI dimers were achieved and named FDI2 and F-FDI2. Both acceptors show high-lying LUMO energy levels and realize high V-OC beyond 1.0 V when using the classic polymer of PBDB-T as an electron donor. However, FDI2 and F-FDI2 gave totally different photovoltaic performance with PCEs of 0.15 and 6.33%, respectively. The central fluorene linkage increased the miscibility of materials and ensured a much higher short-circuit current because of the formation of suitable phase separation. Our results demonstrated that utilizing the mandatory planar skeleton of PDI dimers is a simple and effective strategy to achieve high-performance nonfullerene electron acceptors, and the modulation of central conjugated units is also vital.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available