4.8 Article

Photon-Responsive Antibacterial Nanoplatform for Synergistic Photothermal-/Pharmaco-Therapy of Skin Infection

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 1, Pages 300-310

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b18146

Keywords

black phosphorus; photothermal therapy; liposome; drug-resistant bacteria; skin abscess

Funding

  1. National Natural Science Foundation of China [81771050, 81271108, 81600906, 21675120]
  2. Technical Innovation of Hubei Province [2017CFA025, 2017AHB046]
  3. National Key R&D Program of China [2017YFA0208000]
  4. National Postdoctoral Program for Innovative Talents [BX20180223]
  5. Fundamental Research Funds for the Central Universities [2042017kf0207, 2042017KF0243]
  6. China Postdoctoral Science Foundation [2018M640726]

Ask authors/readers for more resources

Abuse of antibiotics and their residues in the environment results in the emergence and prevalence of drug-resistant bacteria and leads to serious health problems. Herein, a photon-controlled antibacterial platform that can efficiently kill drug-resistant bacteria and avoid the generation of new bacterial resistance was designed by encapsulating black phosphorus quantum dots (BPQDs) and pharmaceuticals inside a thermal-sensitive liposome. The antibacterial platform can release pharmaceuticals in a spatial-, temporal-, and dosage-controlled fashion because the BPQDs can delicately generate heat under near-infrared light stimulation to disrupt the liposome. This user-defined delivery of drug can greatly reduce the antibiotic dosage, thus avoiding the indiscriminate use of antibiotics and preventing the generation of superbugs. Moreover, by coupling the photothermal effect with antibiotics, this antibacterial platform achieved a synergistic photothermal-/pharmaco-therapy with significantly improved antibacterial efficiency toward drug-resistant bacteria. The antibacterial platform was further employed to treat antibiotic-resistant bacteria-caused skin abscess and it displayed excellent antibacterial activity in vivo, promising its potential clinical applications. Additionally, the antibacterial mechanism was further investigated. The developed photon controlled antibacterial platform can open new possibilities for avoiding bacterial resistance and efficiently killing antibiotic resistant bacteria, making it valuable in fields ranging from antiinfective therapy to precision medicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available