4.3 Article

Local control of defects and switching properties in ferroelectric thin films

Journal

PHYSICAL REVIEW MATERIALS
Volume 2, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.2.084414

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC-0012375]
  2. National Science Foundation [DMR-1708615, OISE-1545907, DMR-1338139]
  3. QB3 Institute at the University of California, Berkeley
  4. Army Research Office [W911NF-14-1-104]
  5. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05-CH11231]
  6. Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF5307]

Ask authors/readers for more resources

Electric-field switching of polarization is the building block of a wide variety of ferroelectric devices. In turn, understanding the factors affecting ferroelectric switching and developing routes to control it are of great technological significance. This work provides systematic experimental evidence of the role of defects in affecting ferroelectric-polarization switching and utilizes the ability to deterministically create and spatially locate point defects in PbZr0.2Ti0.8O3 thin films via focused-helium-ion bombardment and the subsequent defect-polarization coupling as a knob for on-demand control of ferroelectric switching (e.g., coercivity and imprint). At intermediate ion doses (0.22-2.2 x 10(14) ions cm(-2)), the dominant defects (isolated point defects and small clusters) show a weak interaction with domain walls (pinning potentials from 200-500 K MV cm(-1)), resulting in small and symmetric changes in the coercive field. At high doses (0.22-1 x 10(15) ions cm(-2)), on the other hand, the dominant defects (larger defect complexes and clusters) strongly pin domain-wall motion (pinning potentials from 500 to 1600 K MV cm(-1)), resulting in a large increase in the coercivity and imprint, and a reduction in the polarization. This local control of ferroelectric switching provides a route to produce novel functions; namely, tunable multiple polarization states, rewritable pre-determined 180 degrees domain patterns, and multiple zero-field piezoresponse and permittivity states. Such an approach opens up pathways to achieve multilevel data storage and logic, nonvolatile self-sensing shape-memory devices, and nonvolatile ferroelectric field-effect transistors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available