4.4 Article

The Assessment and Evolution of Water-Conducting Rules under the Influence of Mining-Induced Stress

Journal

ADVANCES IN CIVIL ENGINEERING
Volume 2018, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2018/5920841

Keywords

-

Funding

  1. National Key Research and Development Program [2016YFC0501102]
  2. National Science and Technology Major Project [2016ZX05066-001]
  3. State Key Laboratory of Coal Resources and Safe Mining [SKLCRSM17KFB04, SKLCRSM17KFA09]

Ask authors/readers for more resources

It is important to study the mechanism of water inrush on a seam floor by exploring the rules of permeability variations during rock deformation on the seam floor and in the course of fracturing as well as their responses to characteristics of the macromechanical environment such as mine ground pressure, engineering geology, and fluid mechanics. First, through the analysis of bearing pressure changes in the process of exploiting the working face, a mechanical model for the seam floor above the confined water is established. Based on the graphic data-processing software Mathcad, the computational process and methods for assessing the vertical, horizontal, and shear stresses are provided together with the corresponding variation curve of the rock stratum 5 m below the floor, covering the entire process from a position 120 m away from the working face to a position 280 m behind it. Second, the permeability coefficients of different lithologies are measured in the laboratory. For rock stratum 5 m below the floor, the corresponding external loading path is set up according to its actual stress. The actual dynamic stress environment of the rocks is simulated, and their permeability characteristics are studied. In addition, based on data fitting, the permeability coefficient variations in the mining process are determined for a rock stratum 5 m below the floor. Finally, in accordance with the permeability variation law of the floor of the working face, the seam floor is divided into six areas, namely, the compression and expansion zone, the bed separation and expansion zone, the pressure relief zone, the compression zone, the stable recovery zone, and the stability zone. Thus, the water-resisting performance of the floor can be expressed more objectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available