4.7 Review

A Review of Biochar and Soil Nitrogen Dynamics

Journal

AGRONOMY-BASEL
Volume 3, Issue 2, Pages 275-293

Publisher

MDPI
DOI: 10.3390/agronomy3020275

Keywords

biochar; immobilization; mineralization; nitrate leaching; nitrogen; nitrous oxide; ammonia volatilisation

Ask authors/readers for more resources

Interest in biochar stems from its potential agronomic benefits and carbon sequestration ability. Biochar application alters soil nitrogen (N) dynamics. This review establishes emerging trends and gaps in biochar-N research. Biochar adsorption of NO3-, up to 0.6 mg g(-1) biochar, occurs at pyrolysis temperatures >600 degrees C with amounts adsorbed dependent on feedstock and NO3- concentration. Biochar NH4+ adsorption depends on feedstock, but no pyrolysis temperature trend is apparent. Long-term practical effectiveness of inorganic-N adsorption, as a NO3- leaching mitigation option, requires further study. Biochar adsorption of ammonia (NH3) decreases NH3 and NO3- losses during composting and after manure applications, and offers a mechanism for developing slow release fertilisers. Reductions in NH3 loss vary with N source and biochar characteristics. Manure derived biochars have a role as N fertilizers. Increasing pyrolysis temperatures, during biochar manufacture from manures and biosolids, results in biochars with decreasing hydrolysable organic N and increasing aromatic and heterocyclic structures. The short-and long-term implications of biochar on N immobilisation and mineralization are specific to individual soil-biochar combinations and further systematic studies are required to predict agronomic and N cycling responses. Most nitrous oxide (N2O) studies measuring nitrous oxide (N2O) were short-term in nature and found emission reductions, but long-term studies are lacking, as is mechanistic understanding of reductions. Stable N isotopes have a role in elucidating biochar-N-soil dynamics. There remains a dearth of information regarding effects of biochar and soil biota on N cycling. Biochar has potential within agroecosystems to be an N input, and a mitigation agent for environmentally detrimental N losses. Future research needs to systematically understand biochar-N interactions over the long term.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available