4.5 Article

Investigation of gelatin/multi-walled carbon nanotube nanocomposite films as packaging materials

Journal

FOOD SCIENCE & NUTRITION
Volume 2, Issue 1, Pages 65-73

Publisher

WILEY
DOI: 10.1002/fsn3.81

Keywords

Antibacterial properties; gelatin; mechanical properties; MWCNT; water resistance

Funding

  1. Shiraz University [88-GR-AGRST-108]

Ask authors/readers for more resources

Gelatin composite films were prepared from gelatin solutions (10% w/v) containing multi-walled carbon nanotubes (MWCNT, 0.5, 1, 1.5, and 2% w/w gelatin) as nanofiller. The water solubility, water swelling, water uptake, water vapor permeability (WVP), mechanical, and antibacterial properties of the films were examined. Water solubility, water swelling, water uptake, and WVP for gelatin films were 45 +/- 1%, 821 +/- 42%, 45 +/- 1.1%, and 0.4 +/- 0.022 g mm/m(2) kPa h, respectively. Incorporation of MWCNT caused a significant decrease in water solubility, water swelling, water uptake, and WVP. Gelatin/MWCNT films containing 1-1.5% MWCNT showed the lowest water vapor transmission. Tensile strength, elongation at break, and Young's modulus for gelatin films were 13.4 +/- 1.2 MPa, 95 +/- 5%, and 45.4 +/- 7 MPa, respectively. Incorporation of MWCNT caused a significant increase in tensile strength and decrease in the elongation at break. The largest mechanical strength was found at 1.5% MWCNT. All gelatin/MWCNT films showed significant antibacterial activities against both gram-positive and gram-negative bacteria. Our results suggest that the gelatin/MWCNT composites films could be used as a very attractive alternative to traditional materials for different biomedical and food applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available