4.3 Article

LARGE-SCALE BICORTICAL SKULL BONE REGENERATION USING EX VIVO REPLICATION-DEFECTIVE ADENOVIRAL-MEDIATED BONE MORPHOGENETIC PROTEIN-2 GENE-TRANSFERRED BONE MARROW STROMAL CELLS AND COMPOSITE BIOMATERIALS

Journal

NEUROSURGERY
Volume 65, Issue 6, Pages 75-82

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1227/01.NEU.0000345947.33730.91

Keywords

Bone marrow mesenchymal stem cells; E1A-deleted adenovirus; Ex vivo gene therapy

Funding

  1. National Science Council Foundation [NSC 95-2314-B-039-005]

Ask authors/readers for more resources

OBJECTIVE: Bone marrow stromal cells (BMSCs) have great potential in bone repair. We developed an animal model to test the hypothesis that ex vivo gene transfer of human bone morphogenetic protein (BMP)-2 to BMSCs via a replication-defective (E1A-deleted) adenovirus vector (AdV) with appropriate biopolymers Would enhance autologous bone formation during repair of a large-scale skull defect. METHODS: Eighteen miniature swine were treated with AdV BMP-2-transduced BMSCs in biopolymer (group 1), BMSCs in biopolymer (group 2), or biopolymer alone (group 3). After 6 months, the swine were killed, and the skull repair was examined by gross Pictures, histology, 3-dimensional computed tomography, and biomechanical study. RESULTS: Group 1 showed complete solid bone formation after 6 months, and hematoxylin and eosin staining demonstrated the presence of mature, woven, well-mineralized bone. Computed tomography showed wholesome repair of the skull defect. Statistical analysis demonstrated a significant difference in bone thickness between groups 1 and 2. Biomechanical testing showed a statistically significant difference in the stiffness of new bone formed in group 1 compared with group 2. CONCLUSION: The Ad5 E1A-deleted AdV may be the optimal starting vector in ex vivo gene therapy for benign skeletal diseases. Additionally, the use of the gelatin/tricalcium phosphate ceramic/glutaraldehyde biopolymer with AdV BMP-2 gene transfer strongly enhances the bony healing of critical-size bicortical craniofacial defects. This method can be used by modifying the delivery of constructs to malunion treatment, in regional osteoporosis therapy, and spinal fusion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available