4.2 Article

CCN1 suppresses pulmonary vascular smooth muscle contraction in response to hypoxia

Journal

PULMONARY CIRCULATION
Volume 5, Issue 4, Pages 716-722

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1086/683812

Keywords

CCN1; pulmonary hypertension; hypoxia; pulmonary artery smooth muscle cell

Funding

  1. NHLBI NIH HHS [R01 HL102076] Funding Source: Medline
  2. NIDDK NIH HHS [R01 DK102624] Funding Source: Medline
  3. NIGMS NIH HHS [R01 GM111313] Funding Source: Medline

Ask authors/readers for more resources

Pulmonary vasoconstriction and increased vascular resistance are common features in pulmonary hypertension (PH). One of the contributing factors in the development of pulmonary vasoconstriction is increased pulmonary artery smooth muscle cell (PASMC) contraction. Here we report that CCN1, an extracellular matrix molecule, suppressed PASMC contraction in response to hypoxia. CCN1 (Cyr61), discovered in past decade, belongs to the Cyr61-CTGF-Nov (CCN) family. It carries a variety of cellular functions, including angiogenesis and cell adhesion, death, and proliferation. Hypoxia robustly upregulated the expression of CCN1 in the pulmonary vessels and lung parenchyma. Given that CCN1 is a secreted protein and functions in a paracine manner, we examined the potential effects of CCN1 on the adjacent smooth muscle cells. Interestingly, bioactive recombinant CCN1 significantly suppressed hypoxia-induced contraction in human PASMCs in vitro. Consistently, in the in vivo functional studies, administration of bioactive CCN1 protein significantly decreased right ventricular pressure in three different PH animal models. Mechanistically, protein kinase A-pathway inhibitors abolished the effects of CCN1 in suppressing PASMC contraction. Furthermore, CCN1-inhibited smooth muscle contraction was independent of the known vasodilators, such as nitric oxide. Taken together, our studies indicated a novel cellular function of CCN1, potentially regulating the pathogenesis of PH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available