4.6 Article

Radiation Pattern Measurement of a Low-Profile Wearable Antenna Using an Optical Fibre and a Solid Anthropomorphic Phantom

Journal

ELECTRONICS
Volume 3, Issue 3, Pages 462-473

Publisher

MDPI
DOI: 10.3390/electronics3030462

Keywords

electro-optical transducer; radiation pattern; phantom; wearable antennas

Ask authors/readers for more resources

This paper presents a study into radiation pattern measurements of an electrically small dielectric resonator antenna (DRA) operating between 2.4 and 2.5 GHz in the industrial, scientific and medical (ISM) radio band for body-centric wireless communication applications. To eliminate the distortion of the radiation pattern associated with the unwanted radiation from a metallic coaxial cable feeding the antenna we have replaced it with a fibre optic feed and an electro-optical (EO) transducer. The optical signal is then converted back to RF using an Opto-Electric Field Sensor (OEFS) system. To ensure traceable measurements of the radiation pattern performance of the wearable antenna a generic head and torso solid anthropomorphic phantom model has been employed. Furthermore, to illustrate the benefits of the method, numerical simulations of the co-polar and cross-polar H-plane radiation patterns at 2.4, 2.45, and 2.5 GHz are compared with the measured results obtained using: (i) an optical fibre; and (ii) a metallic coaxial cable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available