4.5 Article

Three-dimensional convective flows of energetic ions in Jupiter's equatorial magnetosphere

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
Volume 120, Issue 12, Pages 10506-10527

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015JA021103

Keywords

-

Ask authors/readers for more resources

From 1995 to 2003, the Galileo Energetic Particles Detector (EPD) measured the three-dimensional distribution of protons, oxygen, and sulfur ions with total energies between 0.1 and 1 MeV throughout the equatorial Jovian magnetosphere. We perform a spherical harmonics expansion of the measured distributions through the second order and use the resulting anisotropy coefficients to identify purely convecting distributions and derive ion flow velocities via the Compton-Getting effect. We demonstrate that the second-order harmonic terms are an essential diagnostic in excluding spurious gradient anisotropies in the velocity derivation. This analysis unambiguously confirms that energetic ion flows in the azimuthal direction are significantly slower than rigid planetary corotation by an amount that is local time dependent, a phenomenon that is qualitatively consistent with expectations of plasma mass loading within an asymmetric magnetic field configuration. However, both the polar and radial components of the ion flows exhibit unexpected and poorly understood global morphology. Consistently northward and inward flows are observed near the dayside and predusk sectors of the equatorial inner magnetosphere, while southward and outward flows are observed within the plasma sheet in the predawn middle magnetosphere. The persistence of southward convection in this region, which is operative regardless of whether the spacecraft was transiting the plasma sheet from the northern magnetic lobe or from the southern lobe, is inconsistent with contemporary models of dynamical plasma sheet motion, while the distinctive local time asymmetries imply that the solar wind is a significant driver of plasma convection at radial distances as small as 15 R-J.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available