4.6 Article

Fentanyl inhibits the invasion and migration of colorectal cancer cells via inhibiting the negative regulation of Ets-1 on BANCR

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2015.08.068

Keywords

Colorectal cancer; Fentanyl; Ets-1; BRAF-activated lncRNA

Ask authors/readers for more resources

Background: Recent studies have shown the potential anti-tumor effect of fentanyl on colorectal cancer (CRC). However, its underling mechanism is still unclear. Since studies indicates the abnormal expression of transcription factor Ets-1 and BRAF-activated lncRNA (BANCR) in CRC progress, the relationship between Ets-1 and BANCR was investigated here to illustrate the fentanyl-induced mechanism on CRC in vitro. Methods: The expression levels of Ets-1 and BANCR were first detected in fentanyl-treated CRC cells. The interaction between Ets-1 and BANCR promoter was verified with chromatin immunoprecipitation assays, as well as corresponding acetylation of histones. The regulation of Ets-1 on BANCR expression was confirmed through luciferase assays and RT-PCR analysis. And, cell clone formation, cell migration and invasion were observed to evaluate the anti-tumor effects of fentanyl. Ets-1 overexpression or co-overexpression with BANCR was further performed by plasmids transfection to show the regulatory role of Ets-1 in fentanyl-induced mechanism. Results: Fentanyl induced BANCR upregulation and Ets-1 downregulation in CRC cells. Further studies showed that Ets-1 negatively regulated BANCR expression via the deacetylation of histones H3 within BANCR promoter. Moreover, fentanyl induced less cell clone formation, as well as inhibited cell migration and invasion in vitro, while Ets-1 overexpression inhibited fentanyl-induced effects that could be reversed by BANCR co-overexpression. Conclusion: Fentanyl showed anti-tumor like effects on CRC cells, including less cell clone formation and inhibited cell migration and invasion. Furthermore, the regulatory role of Ets-1 on BANCR influenced fentanyl-induced mechanism, indicating their potential application in the therapeutic treatment of CRC. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available