4.7 Article

Delivery of docetaxel using pH-sensitive liposomes based on D-α-tocopheryl poly(2-ethyl-2-oxazoline) succinate: Comparison with PEGylated liposomes

Journal

ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 14, Issue 4, Pages 391-404

Publisher

SHENYANG PHARMACEUTICAL UNIV
DOI: 10.1016/j.ajps.2018.07.005

Keywords

d-alpha-tocopheryl poly(2-ethyl-2-oxazoline) succinate; Liposomes; pH-sensitive; PEGylation

Funding

  1. National Natural Science Foundation of China [81102394]
  2. Natural Science Foundation of Liaoning Province [20170540575]

Ask authors/readers for more resources

This study aimed to investigate the ability of the novel materials D-a-tocopheryl poly(2-ethyl-2-oxazoline) succinate (TPOS) to construct pH-sensitive liposomes. TPOS was initially synthesized and characterized by TLC, FTIR, and H-1-NMR. The buffering capacity of polyethylene glycol- distearoyl- phosphatidylethanolamine (PEG-DSPE) and TPOS was determined by acid-base titration, and TPOS displayed a slower downtrend and gentler slope of titration curve than PEG-DSPE within pH 7.4-5.0. Studies on the in vitro drug release demonstrated that TPOS modified docetaxel (DOC) liposomes (TPOS-DOC-L) had a slower drug-release rate at pH 7.4 similar to PEGylated-DOC liposomes (PEG-DOC-L), whereas the release rate reached approximately 86.92% +/- 1.69% at pH 6.4. In vitro cellular uptake assays by microplate reader, and flow cytometry revealed that TPOS modified coumarin 6 liposomes (TPOS-C6-L) had stronger cellular uptake at pH 6.4 than that at pH 7.4 (P < 0.01). Conversely, for PEGylated C6 liposomes (PEG-C6-L) and conventional C6 liposomes (C6-L), very similar cellular uptakes were exhibited at different pH values. Confocal laser scanning microscopy images showed that PEG-C6-L and C6-L were mainly located in lysosomes. By contrast, TPOS-C6-L showed broader cytoplasmic release and distribution at 4 h. MTT assay showed that the cytotoxicity of TPOS-DOC-L was similar to that of PEG-DOC-L and conventional DOC liposomes (DOC-L) at the same DOC concentration and at pH 7.4, but was much lower than those at pH 6.4 after 48 h of incubation. The apoptosis of PEG-DOC-L and DOC-L had no remarkable improvement with decreased pH from 7.4 to 6.4. Meanwhile, TPOS-DOC-L significantly induced the apoptosis of HeLa cells with decreased pH. Therefore, TPOS can be a biomaterial for the construction of a pH-sensitive drug delivery system. (C) 2018 Published by Elsevier B.V. on behalf of Shenyang Pharmaceutical University.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available