4.6 Article

Distinct patterns of spread of prion infection in brains of mice expressing anchorless or anchored forms of prion protein

Journal

ACTA NEUROPATHOLOGICA COMMUNICATIONS
Volume 2, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/2051-5960-2-8

Keywords

Brain interstitial fluid; Cerebral amyloid angiopathy; Prion; Glycophosphatidylinositol anchor; Basement membrane; Transgenic mice

Categories

Funding

  1. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [ZIAAI000937] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Background: In humans and animals, prion protein (PrP) is usually expressed as a glycophosphatidylinositol (GPI)-anchored membrane protein, but anchorless PrP may be pathogenic in humans with certain familial prion diseases. Anchored PrP expressed on neurons mediates spread of prions along axons in the peripheral and central nervous systems. However, the mechanism of prion spread in individuals expressing anchorless PrP is poorly understood. Here we studied prion spread within brain of mice expressing anchorless or anchored PrP. Results: To create a localized initial point of infection, we microinjected scrapie in a 0.5 microliter volume in the striatum. In this experiment, PrPres and gliosis were first detected in both types of mice at 40 days post-inoculation near the needle track. In mice with anchored PrP, PrPres appeared to spread via neurons to distant connected brain areas by the clinical endpoint at 150 days post-inoculation. This PrPres was rarely associated with blood vessels. In contrast, in mice with anchorless PrP, PrPres spread did not follow neuronal circuitry, but instead followed a novel slower pattern utilizing the drainage system of the brain interstitial fluid (ISF) including perivascular areas adjacent to blood vessels, subependymal areas and spaces between axons in white matter tracts. Conclusions: In transgenic mice expressing anchorless PrP small amyloid-seeding PrPres aggregates appeared to be transported in the ISF, thus spreading development of cerebral amyloid angiopathy (CAA) throughout the brain. Spread of amyloid seeding by ISF may also occur in multiple human brain diseases involving CAA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available