4.6 Article

Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease

Journal

ACTA NEUROPATHOLOGICA COMMUNICATIONS
Volume 2, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s40478-014-0076-z

Keywords

Alzheimer's disease; Hippocampus; Memory; Plasticity; Extracellular matrix; Perineuronal net

Categories

Funding

  1. Top Institute Pharma grant [T5-207]
  2. EU-FP7 framework Health program (SynSys) [242167]
  3. Center for Medical Systems Biology (CMSB)
  4. International Foundation for Alzheimer Research (ISAO)
  5. Netherlands Organization for Scientific Research (NWO) [865.09.003]

Ask authors/readers for more resources

Alzheimer's disease is caused by increased production or reduced clearance of amyloid-beta, which results in the formation amyloid-beta plaques and triggers a cascade of downstream events leading to progressive neurodegeneration. The earliest clinical symptoms of Alzheimer's disease, i.e., memory loss, are however poorly understood from a molecular and cellular perspective. Here we used APPswe/PS1dE9 (APP/PS1) transgenic mice to study the early pre-pathological effects of increased amyloid-beta levels on hippocampal synaptic plasticity and memory. Using an unbiased proteomics approach we show that the early increase in amyloid-beta levels in APP/PS1 mice at three months of age coincides with a robust and significant upregulation of several protein components of the extracellular matrix in hippocampal synaptosome preparations. This increase in extracellular matrix levels occurred well before the onset of plaque formation and was paralleled by impairments in hippocampal long-term potentiation and contextual memory. Direct injection into the hippocampus of the extracellular matrix inactivating enzyme chondroitinase ABC restored both long-term potentiation and contextual memory performance. These findings indicate an important role for the extracellular matrix in causing early memory loss in Alzheimer's disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available